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When making perceptual decisions, organisms often 
benefit from representing uncertainty about sensory 
variables. More specifically, the theory that the brain 

performs Bayesian inference, which has roots in the work of Laplace1 
and von Helmholtz2, has been widely used to explain human and 
animal perception3–6. At its core lies the assumption that the brain 
maintains a statistical model of the world and when confronted 
with incomplete and imperfect information, it makes inferences by 
computing probability distributions over task-relevant world state 
variables (for example, direction of motion of a stimulus). In spite 
of the prevalence of Bayesian theories in neuroscience, evidence to 
support them stems primarily from behavioral studies (for example, 
Alais and Burr7 and Ernst and Banks8). Consequently, the manner 
in which probability distributions are encoded in the brain remains 
unclear, and thus the neural code of uncertainty is unknown.

It has been hypothesized that a critical feature of the neural code 
of uncertainty, which is shared throughout the sensory processing 
chain in the neocortex, is that the same neurons that encode a spe-
cific world state variable (for example, stimulus orientation in V1) 
also encode the uncertainty about that variable (Fig. 1a). Therefore, 
neurons multiplex both a point estimate of a sensory variable and 
the associated uncertainty about it9,10. Specifically, according to the 
probabilistic population coding (PPC) hypothesis9,10, inference in 
the brain is performed by inverting a generative model of neural 
population activity. Under this coding scheme, neural populations 
in V1, for example, that encode stimulus orientation also encode the 
associated uncertainty in the form of the sensory likelihood func-
tion, the probability of observing a given pattern of neural activity 
across hypothesized stimulus values9,11,12. The form of the likelihood 
function is related to the probability distribution describing neural 
variability (noise) for a given stimulus. A sensory likelihood func-
tion is often unimodal13,14, and its width could in principle serve as 
a measure of the sensory uncertainty about the stimulus. Whether 
the brain uses this particular uncertainty quantity in its decisions is 

unknown. Alternatively, it may be the case that the neural popula-
tion that encodes an estimate of a sensory variable (for example, 
stimulus orientation in V1) does not carry information about the 
associated uncertainty (Fig. 1b).

We recorded the activity of V1 cortical populations while mon-
keys performed a visual classification task in which the trial-by-trial 
uncertainty information is beneficial to the animal15. To decode 
the trial-by-trial likelihood functions from the V1 population 
responses, we developed a technique based on deep learning16,17. 
Importantly, we performed all analyses conditioned on the contrast, 
an overt driver of uncertainty, and performed further orientation-
conditioned analyses to isolate the effect of random fluctuations in 
the decoded likelihood function on behavior. We found that using 
the trial-to-trial changes in the shape of the likelihood function 
allowed us to better predict the behavior than using a likelihood 
function with a fixed shape shifted by a point estimate. Therefore, 
we provide evidence that in perceptual decision-making, the  
same cortical population that encodes a sensory variable also 
encodes its trial-by-trial sensory uncertainty information, which 
is used to mediate perceptual decisions and is consistent with the 
theory of PPC.

Results
Behavior. Two Rhesus macaques (Macaca mulatta) were trained 
on an orientation classification task designed such that the optimal 
performance required the use of trial-by-trial uncertainty. On each 
trial, one of two stimulus classes (C = 1 or C = 2) was chosen at ran-
dom with equal probability. Each class was defined by a Gaussian 
probability distribution over the orientation. The two distribu-
tions shared the same mean but had different standard deviations  
(Fig. 2a). An orientation was drawn from the distribution belong-
ing to the selected class, and a drifting grating stimulus with that 
orientation was then presented to the animal (Fig. 2b). In a given 
recording session, at least three distinct contrasts were selected at 
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the beginning of the session, and on each trial, one of these values 
was randomly selected.

In our previous study15, we designed this task so that an opti-
mal Bayesian observer would incorporate the trial-by-trial sensory 
uncertainty about stimulus orientation in making classification 
decisions. Indeed, decisions of both humans and monkeys seemed 
to use trial-by-trial uncertainty about the stimulus orientation. In 
this study, one of the two monkeys (monkey L) was the same mon-
key that participated in the previous study, and thus has been shown 
to have learned the task well. A second monkey (monkey T) was 
also trained on the task and closely matched the performance of 
monkey L (Fig. 2c). Both animals had psychometric curves display-
ing the expected strong dependence on both contrast and orienta-
tion (Fig. 2d,e).

In our analyses, we grouped the trials with the same  
contrast within the same session and refer to such a group as a  
‘contrast-session’.

Decoding likelihood function from V1. Each monkey was 
implanted with a chronic multielectrode (Utah) array in the parafo-
veal primary visual cortex (V1) to record the simultaneous cortical 
population activity as the subjects performed the orientation clas-
sification task (Fig. 3a).

A total of 61 and 71 sessions were analyzed from monkeys 
L and T for a total of 110,695 and 192,631 trials, respectively 
(Extended Data Fig. 1). In each recording session, up to 96 channels  
were recorded. On each trial and for each channel, we computed 
the total number of spikes that occurred during the 500 ms of 
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Fig. 1 | Alternative models of uncertainty information encoding. a, The recorded cortical population, r, responding to sensory stimulus, s, encodes 
stimulus estimate and uncertainty simultaneously in the form of likelihood function L, which is subsequently used in making a decision Ĉ as the subject 
performs a visual classification task. b, The recorded cortical population encodes only a point estimate of the stimulus, ŝ, whereas an estimate of the 
sensory uncertainty is made by other (unrecorded) cortical populations. The information is subsequently combined to lead to the subject’s decision, Ĉ.
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Fig. 2 | Behavioral task. a, The stimulus orientation distributions for the two classes. The two distributions shared the same mean (μ = 0°) but differed in 
their standard deviations (σ1 = 3° and σ2 = 15°). b, Time course of a single trial. The subject fixated on the fixation target for 300 ms before a drifting grating 
stimulus was shown. After 500 ms of stimulus presentation, the subject broke fixation and saccaded to one of the two colored targets to indicate their 
class decision (color matches class color in a). The left–right configuration of the colored targets was chosen at random for each trial. c, Performance of 
the two monkeys on the task across stimulus contrast. Theoretical limit corresponds to the performance of an ideal observer with no observation noise.  
d, Psychometric curves. Each curve shows the proportion of trials on which the monkey reported C = 1 as a function of stimulus orientation, computed from 
all trials within a single contrast bin (n = 110,695 and n = 192,631 total trials for monkeys L and T, respectively). All data points are means, and error bars 
indicate s.e.m. e, Class-conditioned responses. For each subject, the proportions of C = 1 reports are shown across contrasts, conditioned on the ground-
truth class: C = 1 (red) and C = 2 (blue). The symbols have the same meaning as in c.
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stimulus presentation preceding the decision-making cue (Fig. 3a),  
yielding a vector of population responses r used in the subsequent 
analyses (Fig. 3b).

Existing computational methods for decoding the trial-by-trial 
likelihood function from the cortical population activities typically 
make strong parametric assumptions about the stimulus-condi-
tioned distribution of the population response (that is, the genera-
tive model of the population response). For example, population 
responses to a stimulus can be modeled as an independent Poisson 
distribution, allowing each recorded unit to be characterized by a 
simple tuning curve (which may be further parameterized)14,18–22. 
Although this simplifying assumption makes computing the trial-
by-trial likelihood function straightforward, disregarding potential 
correlations among the units in population responses (that is, noise 
correlations and internal brain state fluctuations23–28) can lead to 
biased estimates of the likelihood function and limit the general-
ity of this approach. Even though more generic parametric models, 
such as Poisson-like distributions, of population distributions have 
been proposed9,10,15,29,30, they still impose restrictive assumptions.

We devised a technique based on deep learning to decode the 
trial-by-trial likelihood function from the V1 population response. 
This neural network-based likelihood decoder allowed us to 
approximate the information that can be extracted about the stimu-
lus orientation from the cortical population responses. The network 
was not used as a model of how the rest of the brain extracts and 
processes the information present in the population, but rather to 
decode it and demonstrate that it is used behaviorally.

We trained a fully connected deep neural network (DNN)17 
to predict the per-trial likelihood function L θ θ≡ ∣P r( ) ( ) over  

stimulus orientation θ from the vectorized population response r 
(Fig. 3c; for details on the network architecture, training objective 
and hyperparameter selection, see Methods and Supplementary 
Table 1). A separate network was trained for each contrast-session, 
and no behavioral data were used in training the DNN.

Using a DNN to decode the likelihood function avoids the 
restrictive parametric assumptions described earlier and provides 
a strictly more flexible method, often capturing decoding under 
known distributions as a special case (Extended Data Fig. 2). We 
demonstrated this by showing the DNN can closely approximate 
the ground-truth likelihood function from simulated responses 
sampled from known distributions (Extended Data Fig. 3; refer to 
Methods for the simulation details).

Trial-to-trial uncertainty improves behavioral predictions. To 
assess whether the uncertainty decoded from population responses 
in the form of sensory likelihood functions mediates the behavioral 
outcome (perceptual decision) as we hypothesized, it is critical that 
we appropriately condition the analysis on the stimulus. To illus-
trate the importance of conditioning on the stimulus to determine 
whether the decoded likelihood function mediates perceptual deci-
sions, consider a typical perceptual decision-making task (like ours) 
(Extended Data Fig. 4), where the subject views a stimulus, s, which 
elicits a population response, r, for example, in V1. Here, by ‘stimu-
lus’ we refer collectively to all aspects of a visual stimulus, such as its 
contrast and orientation. Stimulus information is eventually relayed 
to decision-making areas (for example, prefrontal cortex), leading 
the animal to make a classification decision, Ĉ. We decode the like-
lihood function L from the recorded population activity r. Because 
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Fig. 3 | Encoding and decoding of the stimulus orientation. a, An example of 96-channel spike traces from a single trial (monkey T). The vector of spike 
counts, r, was accumulated over the presaccade stimulus presentation period (time 0–500 ms, green shade). b, The population response for the selected 
trials from a single contrast-session (monkey T, 64% contrast). Column: a population response r on a trial randomly drawn from the trials falling into a 
specific orientation bin. Row: a response from a single channel. For visibility, the channel’s responses are normalized to the maximum response across all 
trials. The channels were sorted by the preferred orientation of the channel. Subject’s class decision is indicated by red and blue color patches for Ĉ = 1 
and Ĉ = 2, respectively. c, A schematic of a DNN for the full-likelihood decoder, mapping r to the decoded likelihood function, L. All likelihood functions 
are area-normalized. d, Two decision models M based on alternative likelihood decoders. In the full-likelihood model using the full-likelihood decoder, the 
likelihood L was decoded without any constraints on the shape. In the fixed-uncertainty model using the fixed-uncertainty decoder, all decoded likelihood 
functions shared the same shape but differed in the location of the center based on the population response, and the values of the likelihood functions 
were read out at the discrete points indicated by the markers. For both models, the resulting likelihood functions were fed into a parameterized Bayesian 
decision maker to yield the decision prediction P(Ĉ = 1|r, M).
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variation in the stimulus (for example, orientation or contrast) 
across trials can drive variation both in the decoded likelihood 
function and in the animal’s decision, one may find a dependence of 
Ĉ on L, even if the likelihood function estimated from the recorded 
population r does not mediate the decision. When the stimulus is 
fixed, random fluctuations in the population response, r, can still 
result in variations in L. If the likelihood function truly mediates 
the decision, we expect that such variation in L would account 
for variation in Ĉ. Therefore, to demonstrate that the likelihood 
L mediates the decision Ĉ, it is imperative to show a correlation 
between L and Ĉ conditioned on the stimulus, s.

Because we varied the stimulus contrast from trial to trial in 
our task, the expected uncertainty about the stimulus orientation 
varied, and one would expect the monkeys to represent and make 
use of their trial-by-trial sensory uncertainty in making decisions. 
However, we make a much stronger claim here. Even at a fixed con-
trast, because of random fluctuations in the population response31,32, 
we predict: (1) the uncertainty encoded in the population, that is, 
the likelihood function, will still fluctuate from trial to trial; and  
(2) the effect of such fluctuations will manifest in the monkey’s deci-
sions on a trial-by-trial basis.

We tested this prediction by fitting, separately for each contrast-
session, the following two decision models and comparing their 
performance in predicting the monkey’s trial-by-trial decisions: 
(1) a full-likelihood model that uses the trial-by-trial uncertainty 
information decoded from the population response in the form of 
the likelihood function obtained from the neural network-based 
likelihood decoder (full-likelihood decoder) described earlier  
(Fig. 3d); and (2) a fixed-uncertainty model that uses an alterna-
tive neural network-based likelihood decoder (fixed-uncertainty 
decoder) that learns a single, fixed-shape likelihood function 
whose location is shifted from trial to trial based on the population 
response (Extended Data Fig. 5). The fixed-uncertainty model cap-
tures the alternative hypothesis in which the recorded sensory pop-
ulation encodes only a point estimate of the sensory variable (that 
is, mean of the likelihood function) and the estimate of the sensory 
uncertainty is encoded elsewhere, signified by the fixed shape of 
the likelihood function fitted for each contrast-session under this 
model (Fig. 1b).

We observed that likelihood functions decoded by the full-like-
lihood decoder exhibited the expected dependencies on the overt 
drivers of uncertainty such as contrast (Fig. 4a–c): the width of 
the likelihood function was higher at lower contrast (Fig. 4d), and 
generally, the likelihood function decoded by the fixed-uncertainty 
decoder closely approximated the likelihood function decoded by 
the full-likelihood decoder (Extended Data Fig. 5). We use the term 
‘decoder’ for the DNN that returns estimated likelihood functions 
and the term ‘decision maker’ for the mapping from likelihood 
function to decision. We refer to the combination of a decoder and 
a decision maker as the ‘decision model’, M.

In both models, the decoded likelihood functions were fed into 
the Bayesian decision maker to yield trial-by-trial predictions of 
the subject’s decision in the form of P(Ĉ|r, M), or the likelihood 
of subject’s decisions Ĉ conditioned on the population response, r, 
and the decision model, M. The Bayesian decision maker computed 
the posterior probability of each class and used these to produce a 
stochastic decision. The means of the class distributions assumed 
by the observer, the class priors, the lapse rate and a parameter to 
adjust the exact decision-making strategy were used as free param-
eters (Extended Data Fig. 6; refer to Methods for details). The model 
parameters were fitted by maximizing the total log likelihood over  
all trials (indexed by i) for each contrast-session, Ĉ∑ ∣P Mrlog ( , )i i i . 
The fitness of the models was assessed through cross-validation, and 
we reported mean and total log likelihood of the models across all 
trials in the test set.

Both models incorporated trial-by-trial changes in the point 
estimate of the stimulus orientation (for example, the mean of the 
likelihood function) and differed only in whether they contained 
additional uncertainty information about the stimulus orientation 
carried by the trial-by-trial fluctuations in the shape of the likeli-
hood function decoded from the same population that encoded 
the point estimate. We use the term ‘shape’ to refer to all aspects of 
the likelihood function besides its mean, including its width. If the 
fluctuations in the shape of the likelihood function truly captured 
the fluctuations in the sensory uncertainty as represented and used 
by the animal, one would expect the full-likelihood model to yield 
better trial-by-trial predictions of the monkey’s decisions than the 
fixed-uncertainty model.

We observed that both models predicted the monkey’s behavior 
well across all contrasts (Extended Data Fig. 7), reaching up to a 
90% accuracy rate. We also observed that the performance of the 
decision models using likelihood functions that were decoded by 
the neural networks was superior to the models using likelihood 
functions that were decoded with more traditional parametric gen-
erative models (independent Poisson distribution and Poisson-like 
distribution; refer to Methods for details).

The full-likelihood model consistently outperformed the 
fixed-uncertainty model across contrasts and for both monkeys  
(Fig. 5a,b; trial log-likelihood differences between the full-likelihood 
and fixed-uncertainty models: monkey L, two-tailed paired t test, 
t(110694) = 11.06, P < 10−9, δtotal = 11.0 × 102 over a total of 110,695 
trials; and monkey T, t(192630) = 11.03, P < 10−9, δtotal = 11.3 × 102 
over a total of 192,631, where δtotal is the total log-likelihood differ-
ence across all trials). This result shows that the trial-by-trial fluctu-
ations in the shape of the likelihood function are informative about 
the monkey’s trial-by-trial decisions, demonstrating that decision-
relevant sensory uncertainty information is contained in population 
responses that can be captured by the shape of the full likelihood 
function. This finding in turn strongly supports the hypothesis that 
visual cortex encodes stimulus uncertainty through the shape of the 
full likelihood function on a trial-by-trial basis. We repeated this 
analysis after splitting the data into the first and second 250 ms of 
stimulus presentation. We found a similar improvement for the full-
likelihood model over the fixed-uncertainty model in both periods 
(Extended Data Fig. 8).

We next asked how meaningful our effect sizes (model perfor-
mance differences) are. To answer this question, we simulated the 
monkey’s responses across all trials and contrast-sessions, taking 
the trained full-likelihood model to be the ground truth, and then 
retrained the Bayesian decision makers in the full-likelihood model 
and the fixed-uncertainty model from scratch on the simulated 
data. This approach yields a theoretical upper bound on the observ-
able difference between the two models if the full-likelihood model 
was the true model of the monkeys’ decision-making process.

We observed that the expected upper bound on the total log-like-
lihood differences (δtotal) between the full-likelihood model and the 
fixed-uncertainty model of (37.1 ± 1.5) × 102 and (36.0 ± 1.3) × 102 
based on the simulations (representing mean ± s.d. across five rep-
etitions of simulation for monkeys L and T, respectively) were larger 
but in the same order of the magnitude as the observed model per-
formance differences (11.0 × 102 and 11.3 × 102 total log-likelihood 
differences, δtotal, across all trials for monkeys L and T, respectively), 
suggesting that our effect sizes are meaningful and that the full-like-
lihood model is a reasonable approximate description of the mon-
key’s true decision-making process (Extended Data Fig. 9).

Stimulus-dependent changes in uncertainty. We observed that for 
some contrast-sessions, the average width of the likelihood function 
showed a dependence on the stimulus orientation (Extended Data 
Fig. 9). By design, the fixed-uncertainty model cannot capture this 
stimulus-dependent change in uncertainty, which could contribute 
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to it performing worse than the full-likelihood model (Extended 
Data Fig. 4).

To rule this out, we shuffled the shapes of the decoded likelihood 
functions across trials within the same orientation bin, separately 
for each contrast-session. This shuffling preserved the average 
stimulus-dependent change in uncertainty and trial-by-trial corre-
lation between the mean of the likelihood function and the decision  
(Fig. 5c), while removing the trial-by-trial correlation between the 
shape of the likelihood function and the behavioral decision condi-
tioned on the stimulus orientation.

By design, the fixed-uncertainty model makes identical predic-
tions on the original and the shuffled data. If the full-likelihood 
model outperformed the fixed-uncertainty model simply because 
it captured spurious correlations between the stimulus orienta-
tion and the shape of the likelihood function, then it should out-
perform the fixed-uncertainty model by the same amount on the 
shuffled data. However, if the better behavioral predictions come 
from the trial-by-trial fluctuations in the likelihood shape as we 
hypothesized, one would expect this difference to disappear on 
the shuffled data. Indeed, the shuffling of the likelihood function 
shapes abolished the improvement in prediction performance that 
the full-likelihood model had over the fixed-uncertainty model. In 
fact, the full-likelihood model consistently underperformed the 
fixed-uncertainty model on the shuffled data (Fig. 5a,b; trial log-
likelihood difference between the full-likelihood model and the 
fixed-uncertainty model on the shuffled data: monkey L, two-tailed 
paired t test t(110694) = −18.44, P < 10−9, δtotal = −20.9 × 102 over a 
total of 110,695 trials; and monkey T: t(192630) = −20.15, P < 10−9, 
δtotal = −25.9 × 102 over a total of 192,631 trials, where δtotal is the total 
log-likelihood difference across all trials). Therefore, there were 
significant performance differences in the full-likelihood model 

between the unshuffled and shuffled data (trial log-likelihood 
difference: monkey L, two-tailed paired t test t(110,694) = 33.34, 
P < 10−9, δtotal = 31.9 × 102; and monkey T, t(192,630) = 34.52, 
P < 10−9, δtotal = 37.2 × 102).

To confirm that our effect sizes were appropriate, we again com-
pared these values with those obtained from simulations in which 
we took the full-likelihood model to be the ground truth (Extended 
Data Fig. 9). The simulations yielded total log-likelihood differ-
ences of the full-likelihood model between the unshuffled and 
shuffled data of (36.2 ± 2.2) × 102 (monkey L) and (40.7 ± 1.5) × 102  
(monkey T) (mean ± s.d. across five repetitions), which was similar 
in magnitude to the observed δtotal values.

Taken together, the shuffling analyses show that the better pre-
diction performance of the full-likelihood model is not due to the 
confound between the stimulus and the likelihood shape. We con-
clude that the trial-by-trial likelihood function decoded from the 
population represents behaviorally relevant stimulus uncertainty 
information, even when conditioned on the stimulus.

Attribution analysis. To assess whether the same population 
encoding the best point estimate (that is, mean of the likelihood 
function) also encoded the uncertainty regarding that estimate 
(that is, shape of the likelihood function), as we hypothesized to 
be the case, we performed attribution analysis33 on the trained full-
likelihood decoder. Through this analysis, we ask how much of the 
changes in either the mean of the likelihood μL (that is, surrogate 
for the best point estimate) or the standard deviation of the likeli-
hood function σL (that is, surrogate measure of the uncertainty) can 
be attributed back to each input multiunit, yielding attribution vec-
tors Aμ and Aσ, respectively. The question of feature attribution is an 
active field of research in machine learning, and multiple methods 
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Fig. 4 | Likelihood functions decoded by the trained full-likelihood decoders. a–c, Example decoded likelihood functions from three contrast-sessions, 
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of attribution computation exist33–35. Here, we have selected three 
different methods of computing attribution: saliency maps34, gradi-
ent × input33 and DeepLIFT (DL)35 (refer to Methods for the details 
of attribution computation).

We observed that across all three attribution methods, multi-
units with high μL attribution tended to have high σL attribution, 
and vice versa, giving rise to a high degree of correlation between 
elements of Aμ and Aσ, denoted as Aμ and Aσ (Fig. 6a). If distinct 
subpopulations were involved in encoding the point estimate and 
the uncertainty as found in the likelihood function, we would have 
expected multiunits with a high μL attribution to have a low σL attri-
bution, and vice versa, therefore leading to negative correlation 
between Aμ and Aσ. However, we observed that across all contrast-
sessions from both monkeys, Aμ was strongly positively correlated 
with Aσ regardless of the exact attribution method used, suggesting 
that the highly overlapping subpopulations are involved in encod-
ing both the point estimate and the uncertainty of the likelihood 
function, as we hypothesized would be the case (Fig. 6b–d). We fur-
ther observed that a substantial fraction of multiunits participated 

in encoding both μL (59, 28 and 38 out of 96 multiunits needed 
to attain >90% of total attribution under saliency maps, gradi-
ent × input and DL, respectively) and σL (60, 28 and 38 out of 96 
multiunits needed to attain >90% of total attribution under saliency 
maps, gradient × input and DL, respectively), suggesting that the 
information about the encoded likelihood functions is distributed 
across neurons rather than being encoded by only a small number 
of neurons in the population (Extended Data Fig. 10).

Discussion
Given the stochastic nature of the brain, repeated presentations of 
identical stimuli elicit variable responses. The covariation between 
neuronal activity fluctuations and perceptual choice has been stud-
ied extensively at the level of single neurons, originating with the 
pioneering work of Campbell and Kulikowski36 and Britten et al.37 
Here, we go beyond this literature by examining the hypothesis that 
the brain takes into account knowledge of the form of neural vari-
ability to build a belief over the stimulus of interest on each trial. 
This belief is captured by the likelihood function and the associated 
sensory uncertainty, both of which vary from trial to trial with the 
neural activity. To test this hypothesis, we decoded trial-to-trial like-
lihood functions from the population activity in visual cortex and 
used them in conjunction with a highly constrained, theoretically 
motivated decision-making model (the Bayesian decision maker) 
to predict behavior. We found that a decision model utilizing the 
full likelihood function predicted the monkeys’ choices better than 
alternative models that ignore variations in the shape of the like-
lihood function. Our results provide population-level evidence 
in support of the theoretical framework of PPC, where the same 
neurons that encode specific world state variables also encode the 
uncertainty about those variables. Importantly, under this frame-
work, the brain performs Bayesian inference under a generative 
model of the neural activity.

Our findings were made possible by recording from a large 
population simultaneously and by using a task in which uncer-
tainty is relevant to the animal. In addition, we decoded likelihood 
functions using a DNN that does not rely on the strong parametric 
assumptions about the underlying generative model of the popu-
lation that have dominated previous work. Importantly, we condi-
tioned our analyses on the stimulus to rule out a confounding effect 
of the stimulus on the observed relationship between the decoded 
likelihood function and the subject’s decision. This approach is 
critical because previous behavioral studies on cue combination 
and Bayesian integration, for instance, always relied on varying 
stimulus features (for example, contrast, blur, motion coherence) to 
manipulate uncertainty7,8,22,38. As a result, these studies cannot rule 
out that any observed correlation between a proposed method of 
encoding uncertainty and a subject’s behavior may be confounded 
by the stimulus (Extended Data Fig. 4), and they therefore fail to 
provide a sufficiently rigorous assessment on the representation of 
uncertainty. Carefully controlling for the effect of stimulus fluctua-
tions allowed us to present rigorous evidence that the trial-by-trial 
fluctuations in the likelihood functions carry behaviorally relevant 
stimulus uncertainty information.

After showing that this likelihood function is used behavior-
ally, what more can we say about the neural encoding of perceptual 
uncertainty? First, our network learns the log likelihood of s, that 
is, L = ∣ +s P s br rlog ( ) log ( ) ( ) as a function of s. We never commit 
to a particular generative model P(r|s) as a function of r, because 
the DNN has an arbitrary offset as a function of r (equation (1) in 
Methods). Second, we had to move away from Poisson-like variabil-
ity to better characterize the responses at the cost of analytic forms 
and easy interpretability. We see this as a necessary evil; namely, 
we have shown that making the Poisson-like assumption leads to 
worse predictions of behavior (Extended Data Fig. 7). That being 
said, the DNN can use what we know about generative models in 
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visual cortex (for example, tuning curves, contrast gain) and also 
allows for rich correlation among units in the population. Third, 
interpreting what the DNN does requires more sophisticated deep 
learning-based techniques. A widely studied question in popu-
lation coding is how much individual neurons contribute to the 
population-level information as measured through choice prob-
abilities37. The features of our task that make it sensitive to the use 
of full likelihood functions also make it brittle for estimating choice 
probabilities, simply because there are few trials at the psycho-
physical 50/50 point. Our attribution analysis offers a partial rem-
edy, because it shows that a large number of multiunits drive both 
the mean orientation and the likelihood width from the decoder  
(Fig. 6a and Extended Data Fig. 10). However, because the decoder 
was trained only on visual stimuli and not on behavior, directly 
linking the attribution analysis to choice probability is challenging. 
Fourth, we would like to stress that we do not believe that the DNN 
that we used to decode the likelihood is literally implemented in the 
brain. What kind of transformation the brain performs to use and 
compute with this information remains an important question and 
avenue for future research.

Although the sensory likelihood function is a crucial build-
ing block for probabilistic computation in the brain, fundamental 
questions remain regarding the nature of such computation. First, 
how do downstream areas process the information contained in 
sensory likelihood functions to make better decisions? Previous 
work has manually constructed neural networks for downstream 

computation that relied heavily on the assumption of Poisson-like 
variability9,10,15,39–41. However, more recent work has demonstrated 
that training generic shallow networks accomplishes the same goal 
without the need for task-specific manual construction42. Second, 
does each area in a feedforward chain of computation encode a 
likelihood function over its own variable, with the computation 
propagating the uncertainty information from one variable to the 
next? For example, in our task, it is conceivable that prefrontal cor-
tex encodes a likelihood function over class that is derived from 
a likelihood function over orientation coming in from V1. Third, 
what are the relative contributions of feedforward, recurrent and 
feedback connections to the trial-to-trial population activity and 
the resulting decoded likelihood functions? Some work has argued 
strongly for a role of feedback28,43,44; in this work, we are agnostic to 
this issue. Although answering these questions will require major 
efforts, we expect that our findings will help put those efforts on a 
more solid footing. In the meantime, our results elevate the standing 
of Bayesian models of perception from frameworks to describe opti-
mal input–response mappings45,46 to process models whose internal 
building blocks, likelihood functions and probability distributions, 
are more concretely instantiated in neuronal activity6,47,48.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, extended data, supplementary informa-
tion, acknowledgements, peer review information; details of author 
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Methods
Experimental model and subject details. All behavioral and electrophysiological 
data were obtained from two healthy, male Rhesus macaque (Macaca mulatta) 
monkeys (L and T) aged 10 and 7 years and weighing 9.5 and 15.1 kg, respectively. 
All experimental procedures complied with guidelines of the National Institutes of 
Health and were approved by the Baylor College of Medicine Institutional  
Animal Care and Use Committee (permit number: AN-4367). Animals were 
housed individually in a room located adjacent to the training facility on a 12-h 
light–dark cycle, together with about ten other monkeys, permitting rich  
visual, olfactory and auditory social interactions. Regular veterinary care and 
monitoring, balanced nutrition and environmental enrichment were provided 
by the Center for Comparative Medicine of Baylor College of Medicine. Surgical 
procedures on monkeys were conducted under general anesthesia following 
standard aseptic techniques.

No statistical methods were used to predetermine sample sizes, but our sample 
sizes are similar to those reported in previous publications26,28. Data collection 
and analysis were not performed blind to the conditions of the experiments. In 
performing the analysis, no animal was excluded from the study. Some data points 
(that is, trials) were excluded from the analysis based on criteria described in detail 
later in this article (see Dataset and inclusion criteria). Additional details may be 
found in Life Sciences Reporting Summary.

Stimulus presentation. Each visual stimulus was a single drifting oriented 
sinusoidal grating (spatial frequency: 2.79 cycles per degree visual angle, drifting 
speed: 3.89 cycles s−1) presented through a circular aperture situated at the center 
of the screen. The size of the aperture was adjusted to cover receptive fields of 
the recorded populations, extending 2.14° and 2.86° of visual angle for monkeys 
L and T, respectively. The orientation and contrast of the stimulus were adjusted 
on a trial-by-trial basis as will be described later. The stimulus was presented on a 
cathode-ray tube monitor (at a distance of 100 cm; resolution: 1,600 × 1,200 pixels; 
refresh rate: 100 Hz) using Psychophysics Toolbox49. The monitor was gamma 
corrected to have a linear luminance response profile. Video cameras (DALSA 
genie HM640; frame rate 200 Hz) with custom video eye-tracking software 
developed in LabVIEW were used to monitor eye movements.

Behavioral paradigm. On a given trial, the monkey viewed a drifting oriented 
grating with orientation θ, drawn from one of two classes, each defined by 
a Gaussian probability distribution. Both distributions have a mean of 0° 
(grating drifting horizontally rightward, positive orientation corresponding to 
counterclockwise rotation), but their standard deviations differed: σ1 = 3° for class 1 
(C = 1) and σ2 = 15° for class 2 (C = 2). On each trial, the class was chosen randomly 
with equal probability, with the orientation of the stimulus then drawn from  
the corresponding distribution, P(θ|C). At the beginning of each recording session, 
at least three distinct values of contrasts were selected, and one of these values  
was chosen at random on each trial. Unlike more typical two-category  
tasks using distributions with identical variances but different means, optimal 
decision-making in our task requires the use of sensory uncertainty on a  
trial-by-trial basis15.

Each trial proceeded as follows: a trial was initiated by a beeping sound and 
the appearance of a fixation target (0.15° visual angle) in the center of the screen. 
The monkey fixated on the fixation target for 300 ms within 0.5°–1° visual angle. 
The stimulus then appeared at the center of the screen. After 500 ms, two colored 
targets (red and green) appeared to the left and the right of the grating stimulus 
(horizontal offset of 4.29° from the center with the target diameter of 0.71° visual 
angle), at which point the monkey saccaded to one of the targets to indicate its 
choice of class. For monkey L, the grating stimulus was removed from the screen 
when the saccade target appeared, whereas for monkey T, the grating stimulus 
remained on the screen until the subject completed the task by saccading to the 
target. The left–right configuration of the colored targets was varied randomly 
for each trial. Through training, the monkey learned to associate the red and the 
green targets with the narrow (C = 1) and the wide (C = 2) class distributions, 
respectively. For illustrative clarity, we used blue to indicate C = 2 throughout 
this document. The monkey received a juice reward for each correct response 
(0.10–0.15 mL).

During the training, the monkeys were first trained to perform the colored 
version of the task, where the grating stimulus was colored to match the correct 
class C for that trial (red for C = 1 and green for C = 2). Under this arrangement, 
the monkey simply learned to saccade to the target matching the color of the 
grating stimulus, although the grating stimulus orientation information was always 
present. As the training proceeded, we gradually removed the color from the 
stimulus, encouraging the monkey to make use of the orientation information in 
the stimulus to perform the task. Eventually, the color was completely removed, 
and at that point the monkey was performing the full version of the task.

Surgical methods. Our surgical procedures followed a previously established 
approach28,50,51. In brief, a custom-built titanium cranial headpost was first 
implanted for head stabilization under general anesthesia using aseptic conditions 
in a dedicated operating room. After premedication with dexamethasone (0.25–
0.5 mg kg−1 at 48 h, 24 h and on the day of the procedure) and atropine (0.05 mg kg−1 

before sedation), animals were sedated with a mixture of ketamine (10 mg kg−1) 
and xylazine (0.5 mg kg−1). During the surgery, anesthesia was maintained 
using isoflurane (0.5–2%). After the monkey was fully trained, we implanted a 
96-electrode microelectrode array (Utah array; Blackrock Microsystems, Salt  
Lake City, UT, USA) with a shaft length of 1 mm over parafoveal area V1 on the 
right hemisphere. This surgery was performed under identical conditions as 
described for headpost implantation. Analgesics were given for 7 d after surgery  
to alleviate pain.

Electrophysiological recording and data processing. The neural signals were 
preamplified at the head stage by unity gain preamplifiers (HS-27; Neuralynx, 
Bozeman, MT, USA). These signals were then digitized by 24-bit analog data 
acquisition cards with 30-dB onboard gain (PXI-4498; National Instruments, 
Austin, TX, USA) and sampled at 32 kHz. Broadband signals (0.5 Hz to 16 kHz) 
were continuously recorded using custom-built LabVIEW software for the 
duration of the experiment. Eye positions were tracked at 200 Hz using video 
cameras (DALSA genie HM640) with custom video eye-tracking software 
developed in LabVIEW. The spike detection was performed offline according to a 
previously described method26,28,50. In brief, a spike was detected when the signal 
on a given electrode crossed a threshold of five times the s.d. of the corresponding 
electrode. To avoid artificial inflation of the threshold in the presence of a large 
number of high-amplitude spikes, we used a robust estimator of the s.d.52, given 
by median(|x|)/0.6745. Spikes were aligned to the center of mass of the continuous 
waveform segment above half the peak amplitude. Code for spike detection is 
available online at https://github.com/atlab/ephys-preprocessing. In this study, the 
term ‘multiunit’ refers to the set of all spikes detected from a single channel (that 
is, electrode) of the Utah array, and all analyses in the main text were performed 
on multiunits. For each multiunit, the total number of spikes during the 500 ms of 
pretarget stimulus presentation, ri for the ith unit, was used as the measure of the 
multiunit’s response for a single trial. The population response, r, is the vector of 
spike counts for all 96 multiunits.

Dataset and inclusion criteria. We recorded a total of 61 and 71 sessions from 
monkeys L and T, for a total of 112,072 and 193,629 trials, respectively. We 
removed any trials with electrophysiology recordings contaminated by noise  
in the recording devices (for example, poor grounding connector resulting in 
movement noise) or equipment failures. To do so, we established the following  
trial inclusion criteria:

	(1)	 The total spike counts = ∑r rt i i across all channels should fall within the ±4σadj 
from the median total spike counts across all trials from a single session. σadj 
is the s.d. of the total spike count distribution robustly approximated using 
the interquartile range (IQR) as follows: σ =

.adj
IQR
1 35

.
	(2)	 For at least 50% of all units, the observed ith unit spike count ri for the trial 

should fall within a range defined as: |ri − MEDi| ≤ 1.5 × IQRi, where MEDi 
and IQRi are the median and IQRs of the ith unit spike counts distribution 
throughout the session, respectively.

We included only trials that satisfied both of the criteria in our analysis. 
Empirically, we found the earlier criteria to be effective in catching obvious 
anomalies in the spike data while introducing minimal bias into the data. After the 
application of the criteria, we were left with 110,695 and 192,631 trials for monkeys 
L and T, thus retaining 98.77% and 99.48% of the total trials, respectively. Although 
this selection criteria allowed us to remove any apparent anomaly in the data, we 
found that the main findings described in this article were not sensitive to the 
precise definition of the inclusion criteria.

When analyzing the population responses to the first half (0–250 ms) or the 
second half (250–500 ms) of the stimulus presentation as found in Extended 
Data Fig. 8, we reapplied the earlier trial selection criteria to the respective time 
segment, obtaining 110,816 and 192,962 trials for monkeys L and T for the first 
half (0–250 ms), and 110,887 and 192,980 trials for monkeys L and T for the second 
half (0–500 ms), again retaining >98% of the total trials in all conditions.

During each recording session, stimuli were presented under three or more 
contrast values. In all analyses to follow, we studied the trials from distinct  
contrast separately for each recording session, and we refer to this grouping as a 
contrast-session.

Receptive field mapping. On the first recording session for each monkey, the 
receptive field was mapped using spike-triggered averaging of the multiunit 
responses to a white noise random dot stimulus. The white noise stimulus 
consisted of square dots of size 0.29° of visual angle presented on a uniform gray 
background, with randomly varying location and color (black or white) every 
30 ms for 1 s. We adjusted the size of the grating stimulus as necessary to ensure 
that the stimulus covers the population receptive field entirely.

Full-likelihood decoder. Given the population activity r in response to an 
orientation θ, we aimed to decode uncertainty information in the form of a 
likelihood function L θ θ≡ |P r( ) ( ), as a function of θ. This may be computed 
through the knowledge of the generative relation leading from θ to r, that is, 
by describing the underlying orientation conditioned probability distribution 
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over r, P(r|θ). This procedure is typically approximated by making rather strong 
assumptions about the form of the density function, for example, by assuming 
that neurons fire independently and each neuron fires according to the Poisson 
distribution19. Under this approach, the expected firing rates (that is, tuning 
curves) of the ith neuron E[ri|θ] = fi(θ) must be approximated as well, for example, 
by fitting a parametric function (for example, von Mises tuning curves53) or 
employing kernel regression19. Although these approaches have proved useful, the 
effect of the strong and likely inaccurate assumptions on the decoded likelihood 
function remains unclear. Ideally, we can more directly estimate the likelihood 
function L θ( ) without having to make strong assumptions about the underlying 
conditional probability distribution over r.

To this end, we used a DNN16 to directly approximate the likelihood function 
over the stimulus orientation, θ, from the recorded population response r. Here, 
we present a brief derivation that serves as the basis of the network design and 
training objective. Let us assume that m multiunits were recorded simultaneously 
in a single recording session, so that r ∈ ℝm. To make the problem tractable, we 
bin the stimulus orientation θ into n distinct values, θ1 to θn (the derivation holds 
in general for arbitrarily fine binning of the orientation). With this, the likelihood 
function can be captured by a vector L ∈ ℝn, where L θ=L ( )i i . Let us assume that we 
can train some DNN to learn a mapping f from the population response r to the log 
of the likelihood function L up to a constant offset b. That is, R R↦f : m n:

θ↦ = + = ∣ +f b P br r L r r r( ) log ( ) log ( ) ( ) (1)

for some scalar function b ∈ ℝ. As the experimenter, we know the distribution 
of the stimulus orientation, pθ ∈ ℝn, where pθ,i = P(θi). We combine f(r) and pθ to 
compute the log posterior over stimulus orientation θ up to some scalar value b′(r),

θ≡ + = ∣ + ′
θ f P bz r p r r r( ) log ( ) log ( ) ( ) (2)

We finally take the softmax of z(r) and recover the normalized posterior function 
q(r) ≡ softmax(z(r)), where

=
∑

q r( ) e
e

(3)i
j

z r

z r

( )

( )

i

j

θ θ
θ θ

=
= ∣

∑ = ∣

′

′
P

P
r

r
e ( )

e ( )
(4)

b
i

b
j j

r

r

( )

( )

θ θ= = ∣P r( ) (5)i

Overall, q(r) = softmax(log pθ + f(r)).
The goal then is to train the DNN f(r) such that the overall function q(r) 

matches the posterior over the stimulus, p(r), where pi(r) = P(θ = θi|r) based on 
the available data. This, in turn, allows the network output f(r) to approach the log 
of the likelihood function L, up to a constant b(r). For one-out-of-n classification 
problems, minimizing the cross-entropy between q(r) and the stimulus orientation 
θ for a given r lets the overall function q(r) approach the true posterior p(r), as 
desired54,55. To show this, let us start by minimizing the difference between the 
model estimated posterior q(r) and the true posterior p(r) over the distribution 
of r. We do this by minimizing the loss, L, defined as the expected value of the 
Kullback–Leibler (KL) divergence56 between the two posteriors:

E= ∣∣L W D p q( ) [ ( )] (6)r KL
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
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E E θ
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= ∣

∣θ
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q W
r

r
log ( )

( , )
(8)r,

E θ θ= − ∣ − ∣θ q W Hr r[log ( , )] ( ) (9)r,

where P(θ = θi|r) ≡ pi(r), q(θ = θi|r, W) ≡ qi(r, W), W is a collection of all trainable 
parameters in the network and H(θ|r) is the conditional entropy of θ conditioned 
on r, which is an unknown but a fixed quantity with respect to W and the data 
distribution. Here, we used the notation q(r, W) to highlight the dependence of the 
network estimated posterior q(r) on the network parameters W. We can redefine 
the loss, L*, leaving only the terms that depend on the trainable parameters W, and 
then apply a Monte Carlo method57 to approximate the loss from N samples:

E θ= − ∣θL W q Wr*( ) [log ( , )] (10)r,

∑ θ≈ − ∣
N

q Wr1 log ( , ) (11)
i

i i( ) ( )

where (θ(i), r(i)) are samples drawn from a training set for the network.  
Equation (11) is precisely the definition of the cross-entropy as we set out to show it.

Therefore, by optimizing the overall function q(r) to match the posterior 
distribution through the use of cross-entropy loss, the network output f(r) can 
approximate the log of the likelihood function L θ( ) for each r up to an unknown 
constant, b(r). Because we do not know the value of b(r), the network will not learn 
to recover the underlying generative function linking from θ to r, P(r|θ).

As an example, consider a neural population with responses that follow a 
Poisson-like distribution (that is, a version of the exponential distribution with 
linear sufficient statistics9,10). Learning a decoder for such population responses 
occurs as a special case of training a DNN-based likelihood decoder. For Poisson-
like variability, the stimulus-conditioned distribution over r is θ ϕ∣ = θ⊤

P r r( ) ( )eh r( ) .  
The log-likelihood function is then ϕ= + ⊤L r H rlog log ( ) , where H is a matrix 
whose ith column is h(θi). If we let = ⊤f r H r( ) , then f(r) = log L + b(r) as  
desired, for b(r) = −logϕ(r). Hence if we used a simple fully connected network, 
training the network is equivalent to fitting the kernel function h(θ) of the  
Poisson-like distribution.

In this work, we modeled the mapping f(r) as a DNN with two hidden layers17, 
consisting of two repeating blocks of a fully connected layer of size Nh followed by 
a rectified linear unit (ReLU)16 and a dropout layer58 with dropout rate dr, and a 
fully connected readout layer with no output nonlinearity (Fig. 3c). To encourage 
smoother likelihood functions, we added an L2 regularizer on log L filtered with 
a Laplacian filter of the form h = [−0.25, 0.5, −0.25]. Therefore, the training loss 
included the term:

∑γ=R u (12)
i

i
2

for u = (log L) * h, where * denotes convolution operation, ui is the ith element 
of the filtered log-likelihood function u and γ is the weight on the smoothness 
regularizer.

We trained a separate instance of the network for each contrast-session and 
referred to this class of DNN-based likelihood decoder as the full-likelihood 
decoder to differentiate from alternative decoders described later.

During the training, each contrast-session was randomly split in proportions of 
80%/20% to yield the training set and the validation set, respectively. The stimulus 
orientation θ was binned into integers in the range [−45°, 45°], and we excluded 
trials with orientations outside this range. This led to the exclusion of 157 out of 
110,695 trials (0.14%) and 254 out of 192,631 trials (0.13%) for monkeys L and 
T data, respectively. The network was trained on the training set, starting with 
initial learning rate of λ0, and its performance on the validation set was monitored 
to perform early stopping59 and subsequently hyperparameter selection. For early 
stopping, we computed the mean squared error (MSE) between the maximum 
a posteriori (MAP) readout of the network output posterior q and the stimulus 
orientation θ on the validation set, and the training under a particular learning 
rate was terminated (early stopped) if MSE failed to improve over 400 consecutive 
epochs, where each epoch is defined as one full pass through the training set. Upon 
early stopping, the parameter set that yielded the best validation set MSE during the 
course of the training was restored. The restored network was then trained again but 
with an updated learning rate λ λ= −i i

1
3 1, employing the same early stopping criteria. 

This procedure was repeated four times, therefore training the network under the 
four sequentially decreasing learning rate schedules of λ0, λ1

3 0, λ1
9 0 and λ1

27 0. Once 
the training was complete, the trained network was evaluated on the validation 
set to yield the final score, which served as the basis for our hyperparameter 
selections. The values of hyperparameters for the networks, including the size of the 
hidden layers Nh, the initial learning rate λ0, the weight on the likelihood function 
smoothness regularizer γ and the dropout rate dr during the training were selected 
by performing a random grid search over candidate values to find the combination 
that yielded the best validation set score for each contrast-session instance of 
the network (Supplementary Table 1). We observed that all possible values of 
hyperparameters were found among the best selected hyperparameter networks 
across all contrast-sessions and all types of networks trained.

Decoding likelihood functions from known response distributions. To assess 
the effectiveness of the DNN-based likelihood decoding method described earlier, 
we simulated neural population responses with known noise distributions, trained 
DNN decoders on the simulated population responses and compared the decoded 
likelihood functions with the ground-truth likelihood functions obtained by 
inverting the known generative model for the responses. We also compared the 
quality of the DNN-decoded likelihood functions with those decoded by assuming 
independent Poisson distribution on the population responses, as done in previous 
work14,18,19,21,22.

We simulated the activities of a population of 96 multiunits rsim responding  
to the stimulus orientation θ drawn from the distribution defined for our task  
such that:

N Nθ θ σ θ σ= +P( ) 1
2

( ; 0, ) 1
2

( ; 0, ) (13)1
2

2
2

where σ1 = 3° and σ2 = 15°.
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We modeled the expected response of ith unit to θ—that is, the tuning function 
fi(θ)—with a Gaussian function:

L ∏ ∏θ θ
θ

= ∣ =
θ−

P r
f

r
( ) ( )

( ) e
!

(14)
i

i
i

i
r f

i

( )i i

For the simulation, we have set A = 6 and σsim = 21°. We let the mean of the 
Gaussian tuning curves for the 96 units to uniformly tile the stimulus orientation 
between −40° and 40°. In other words:

μ = − + −i40 16
19

( 1) (15)isim,

for i ∈ [1, 96].
For any given trial with a drawn orientation θ, the population response rsim 

was then generated under two distinct models of distributions. In the first case, 
the population responses were drawn from an independent Poisson (Poiss) 
distribution as is commonly assumed in many works:

∏θ θ∣ =P r fr( ) Poiss( ; ( )) (16)
i

i isim sim,

∏
θ

=
θ−f

r
( ) e

!
(17)

i

i
r f

i

( )

sim,

i isim,

In the second case, the population responses were drawn from a multivariate 
Gaussian distribution with covariance matrix Σ ∈ ℝ96×96 that scales with the mean 
response of the population. That is:

Nθ θ θΣ∣ =P r r f( ) ( ; ( ), ( )) (18)sim sim

for

θ θ θΣ = ∕ ⊤ ∕f C f( ) diag( ( )) diag( ( )) (19)1 2 1 2

where f1/2(θ) ∈ ℝ96, such that θ θ=∕ ff ( ) ( )i i
1 2  and C∈ ℝ96×96 is a correlation matrix. 

Under this distribution, the variance of any unit’s response scales linearly with its 
mean just as in the case of the Poisson distribution, but the population responses 
can be highly correlated depending on the choice of the correlation matrix C. For 
the simulation, we randomly generated a correlation matrix with the average units 
correlation of 0.227.

For each case of the distribution, we simulated population responses for the 
total of 1,200 trials. Among these, 200 trials were set aside as the test set. We 
trained the DNN-based likelihood decoder on the remaining 1,000 trials, splitting 
them further into 800 and 200 trials as the training and validation set, respectively. 
We followed the exact DNN training and hyperparameter selection procedure as 
described earlier.

For comparison, we also decoded the likelihood function from the population 
response rsim under the assumption of independent Poisson variability, regardless 
of the ‘true’ distribution. Each unit’s responses over the 1,000 trials were fitted 
separately with a Gaussian tuning curve (equation (14)). The parameters of 
the tuning curve Ai, μi and σsim,i were obtained by maximizing the likelihood of 
observing the ith unit’s responses (θ,rsim,i) for the given Gaussian tuning curve 
assuming independent Poisson noise, using minimize function from the Python 
SciPy optimization library.

The ground-truth likelihood function P(rsim|θ) was computed for each 
simulated trial according to the definition of the distribution as found in equation (16)  
for the independent Poisson population or equation (18) for the mean scaled 
correlated Gaussian population.

We then assessed the quality of the decoded likelihood functions under 
the independent Poisson model L θ( )Poiss  and under the DNN model LDNN by 
computing their KL divergence56 from the ground-truth likelihood function L θ( )gt ,  
giving rise to DPoiss and DDNN, respectively. All continuous likelihood functions  
(Lgt and LPoiss) were sampled at orientation θ, where θ ∈ ℤ and θ ∈ [−45°, 45°],  
giving rise to discretized likelihood functions Lgt and LPoiss, matching the 
dimensionality of the discretized likelihood function LDNN computed by the DNN. 
We then computed the KL divergence as:

∑=D
L

L
Llog (20)

i

i

i
iPoiss

gt,

Poiss,
gt,

and

∑=D
L

L
Llog (21)

i

i

i
iDNN

gt,

DNN,
gt,

We computed the KL divergence for both models across all 200 trials in the test 
set for both simulated population distributions (Extended Data Fig. 3). When the 
simulated population distribution was independent Poisson, then DPoiss < DDNN for 

all test set trials, indicating that LPoiss better approximated Lgt overall than LDNN. 
However, LDNN still closely approximated Lgt.

When the simulated population distribution was mean scaled correlated 
Gaussian, LDNN better approximated Lgt than LPoiss on the majority of the trials. 
Furthermore, LPoiss provided qualitatively worse fit to the Lgt for the simulated 
correlated Gaussian distribution compared with the fit of LDNN to Lgt for the 
simulated independent Poisson distribution.

Overall, the simulation results suggest that: (1) when the form of the 
underlying population distribution is known (such as in the case of the 
independent Poisson population), more accurate likelihood functions can be 
decoded by directly using the knowledge of the population distribution than 
through the DNN-based likelihood decoder; but (2) when the form of the 
underlying distribution is unknown (such as in the case of the mean scaled 
correlated Gaussian distribution), then a DNN-based likelihood decoder can 
yield much more accurate likelihood functions than if one was to employ a wrong 
assumption about the underlying distribution in decoding likelihood functions; 
and (3) a DNN-based likelihood decoder can provide a reasonable estimate 
of the likelihood function across a wide range of underlying distributions. 
Because the true underlying population distribution is hardly ever known to 
the experimenter, we believe that our DNN-based likelihood decoder stands as 
the most flexible method in decoding likelihood functions from the population 
responses to stimuli.

Fixed-uncertainty likelihood decoder. To test whether the trial-by-trial 
fluctuations in the shape of the likelihood function convey behaviorally relevant 
information, we developed the fixed-uncertainty likelihood decoder, a neural 
network-based likelihood decoder that learns a fixed-shape likelihood function 
whose location is shifted based on the input population response.

The fixed-uncertainty decoder network consisted of two parts: a learned fixed-
shape likelihood function, L0, and a DNN that reads out a single scalar value,  
Δs, corresponding to the shift that is applied to L0 (Extended Data Fig. 5) to yield 
the final likelihood function L. The DNN consisted of two repeating blocks of 
a fully connected layer followed by ReLU and a dropout layer, and a final fully 
connected readout layer with no output nonlinearity, much like the DNN used for 
the full-likelihood decoder. The log L0 was shifted by Δs using linear interpolation-
based grid sampling60 to shift the log-likelihood function in a manner that allows 
for the gradient of the loss to flow back to both the shift value Δs (and therefore to 
the DNN parameters) and to the likelihood function shape L0.

The output shifted log-likelihood function was then trained in an identical 
manner to the full-likelihood decoder described earlier, using the same set of 
training paradigm with early stopping and regularizers, and explored the same 
range of hyperparameters.

Likelihood functions based on Poisson-like and independent Poisson 
distributions. To serve as a comparison, for each contrast-session, we decoded 
likelihood functions from the population response assuming Poisson-like or 
independent Poisson distribution for P(r|θ) (Extended Data Fig. 2).

As noted earlier, decoding likelihood function under the Poisson-like 
distribution is a special case of the full-likelihood decoder but using entirely 
linear DNN (that is, no nonlinearity used in the network). Therefore, to decode 
likelihood functions under the assumption of the Poisson-like distribution,  
for each contrast-session, we trained a DNN with two hidden layers consisting  
of two repeating blocks of a fully connected layer followed by a dropout layer58,  
but with no nonlinear activation functions, and a fully connected readout 
layer with no output nonlinearity. The rest of the training and model selection 
procedure was identical to that of the full-likelihood or the fixed-uncertainty 
decoder described earlier.

To decode the likelihood function under the independent Poisson distribution 
assumption, we first fitted tuning curves fi(θ) for each multiunit’s responses to 
stimulus orientations θ within a single contrast-session. Tuning curves were 
computed using Gaussian process regression61 with squared exponential covariance 
function θ θ θ θ= − −

σ( )f fcov( ( ), ( )) exp ( )1 2
1

2 1 2
2

L
 and a fixed observational noise 

σo using values of σL = 20 and σo = 2 selected based on the cross-validation 
performance on multiunit’s response prediction on a dataset not included 
elsewhere in the analysis. Once tuning curves were computed, the likelihood 
function over stimulus orientations was computed from the population response r 
as follows:

L ∏ ∏θ θ
θ
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Mean and standard deviation of likelihood function. For uses in the subsequent 
analyses, we computed the mean and the s.d. of the likelihood function by treating 
the likelihood function as an unnormalized probability distribution:

L

L

∫
∫

μ
θ θ θ

θ θ
=

( )d

( )d
(23)L
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We took the μL and σL to be the point estimate of the stimulus orientation 
and the measure of the spread of the likelihood function, respectively, used in all 
subsequent analyses. Although not presented here, we performed the following 
analyses with other point estimates of the stimulus orientation such as the 
orientation at the maximum of the likelihood function and the median of the 
likelihood functions, and observed that the precise choice of the point estimate 
does not affect the main findings.

Attribution analysis. To assess whether the same members of the population 
simultaneously encode the best point estimate (that is, in the form of the mean of 
the likelihood function μL) and uncertainty (that is, in the form of the width of the 
likelihood function σL), we computed the attribution of each multiunit input of the 
trained full-likelihood decoder to the mean of the likelihood μL and the s.d. of the 
likelihood function σL, giving rise to the attribution Aμ, Aσ ∈ ℝm, respectively, where 
m is the number of multiunits in the input to the network. Among numerous 
methods of computing attribution33–35,62, we have selected three popular gradient-
based attribution methods33, saliency maps34, gradient × input62 and DL35, and 
compared their results.

Given a collection of input population responses and computed likelihood 
functions {r(k), L(k)}, where the superscript denotes the kth trial in the contrast-
session, we compute the mean and the s.d. of the likelihood function according 
to equations (23) and (24), respectively, giving rise to μL

k( ) and σL
k( ). Given a 

target feature S ∈ {μL, σL} that can be computed from the input units r through a 
differentiable function, we compute the attribution of the input units to the target S 
for each trial according to each attribution method, yielding aS

k
,method

( ) , where a ∈ ℝm. 
The sign of the attribution indicates whether increasing the unit tends to increase 
or decrease the target feature. Because we are interested more in how much each 
unit contributes to the target feature rather than in which direction, we take the 
absolute value of per-trial attribution and compute the average across all trials to 
yield the final attribution of the input units:

∑= ∣ ∣
N

A a1
(25)S

k
S
k

,method ,method
( )

where N is the total number of trials in the contrast-session.
For the saliency maps-based method34, the attribution is computed as the 

partial derivative of the feature S with respect to the input units r:

= ∂
∂
Sa
r

(26)S,Saliency

which can be computed rather straightforwardly on a DNN implemented using 
any of the modern neural network libraries equipped with automatic gradient 
computation.

For the gradient × input (GI) method, the attribution is computed as the 
gradient of the feature with respect to the input (as in saliency maps) multiplied 
with the input r:

= ∂
∂

⊙Sa
r

r (27)S,GI

where ⊙ denotes the Hadamard (element-wise) product.
Finally, we computed DL attribution by using modified gradient computation 

for ReLUs in the network defined as:

∂
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(28)
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where x0 represents the input into the ReLU nonlinearity when a reference input 
r0 was used as the input into the network. Here, we have defined the reference 
network input to be the average population response across all trials (refer to 
Ancona et al.33 and Shrikumar et al.35 for details).

Using the above modified gradient computation for ReLU nonlinearity in the 
backpropagation to compute the partial derivative of the target feature with respect 
to the input units yields the modified partial derivative ∂

∂
S

r

m
, which is finally used to 

compute the DL attribution as:

= ∂
∂

⊙ −Sa
r

r r( ) (29)S

m

,DL 0

For each contrast-session and each attribution method, we computed the 
attribution of the input units to both μL and σL, yielding vectors Aμ and Aσ, and we 
computed Pearson’s correlation coefficient between their elements, Aμ and Aσ (Fig. 6).  
Furthermore, for each contrast-session and each attribution method, the input 

units were ordered from the largest to the smallest attribution, and the cumulative 
attribution over the ordered units was computed (Extended Data Fig. 10).

Among 546 total contrast-sessions collected from monkeys L and T, the full-
likelihood decoder trained on one of the contrast-sessions (monkey T, 0.05% 
contrast with 162 trials) failed to show dependency on the input population 
responses r, and therefore attribution could not be properly computed. Given this, 
attribution analyses were performed on the remaining 545 contrast-sessions.

Decision models. Given the hypothesized representation of the stimulus and its 
uncertainty in the form of the likelihood function L θ θ≡ ∣P r( ) ( ), the monkey’s 
trial-by-trial decisions were modeled based on the assumption that the monkey 
computes the posterior probability over the two classes C = 1 and C = 2, and 
uses this information in making decisions, that is, in accordance to a model of 
a Bayesian decision maker. The orientation distributions for the two classes are 

Nθ θ μ σ∣ = =P C( 1) ( ; , )1
2  and Nθ θ μ σ∣ = =P C( 2) ( ; , )2

2  with μ = 0°, σ1 = 3° and 
σ2 = 15°, where N θ μ σ( ; , )2  denotes a Gaussian distribution over θ with mean μ and 
variance σ2. The posterior ratio ρ for the two classes is:
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A Bayes-optimal observer should select the class with the higher probability, a 
strategy known as MAP decision-making:

Ĉ = ∣P C rargmax ( ) (33)
C

where Ĉ is the subject’s decision. However, according to the posterior probability 
matching strategy63,64, the decision of subjects on certain tasks is better modeled as 
sampling from the posterior probability:

Ĉ Ĉ= = ∣P P C r( ) ( ) (34)

To capture either decision-making strategy, we modeled the subject’s classification 
decision probability ratio as follows:
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where α ∈ ℝ+. When α = 1, the decision-making strategy corresponds to the 
posterior probability matching, whereas α = ∞ corresponds to the MAP strategy64. 
We fitted the value of α for each contrast-session during the model fitting to 
capture any variation of the strategy. Furthermore, we incorporated a lapse rate λ,  
a fraction of trials on which the subject does not pay attention and makes a random 
decision. Hence the final probability that the subject selects class C = 1  
was modeled as:

Ĉ λ
ρ

λ= = −
+

+ .αP( 1) (1 ) 1
1

0 5 (36)































L N

L N

∫
∫

λ
θ θ μ σ θ

θ θ μ σ θ
λ= − +

=

=
+ .

α −
P C

P C
(1 ) 1

( 2) ( ) ( ; , )d

( 1) ( ) ( ; , )d
0 5 (37)2

2

1
2

1































L N

L N

∫
∫

λ
θ θ μ σ θ

θ θ μ σ θ
λ= − +

− =

=
+ .

α −
P C

P C
(1 ) 1

(1 ( 1)) ( ) ( ; , )d

( 1) ( ) ( ; , )d
0 5 (38)2

2

1
2

1

For each contrast-session, we fitted the above Bayesian decision model to the 
monkey’s decisions by fitting the four parameters: μ, P(C = 1), α and λ. Fitting μ 
(the center of stimulus orientation distributions) and P(C = 1) (prior over class) 
allowed us to capture the bias in the stimulus (orientation) distribution that the 
subject may have acquired erroneously during the training, and fitting α and λ 
allowed for the model to match the decision-making strategy employed by  
the subject.

Using the likelihood function L θ( ) decoded from the V1 population response 
via the full-likelihood decoder network in equation (38) gave rise to the full-
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likelihood model that made use of all information, including the trial-by-trial 
uncertainty information as captured by the trial-by-trial fluctuations in the shape 
of the likelihood function. Alternatively, using the likelihood function decoded 
by the trained fixed-uncertainty decoder gave rise to the fixed-uncertainty model. 
The fixed-uncertainty model effectively ignores all trial-by-trial fluctuations 
in the uncertainty that would be captured by the fluctuations in the shape of 
the likelihood function, but captures the trial-by-trial point estimate of the 
stimulus orientation θ ̂ by shifting the learned fixed-shape likelihood function 
over orientation. For each contrast-session, a different fixed-likelihood shape was 
learned, allowing the overt measure of uncertainty, such as contrast, to modulate 
the expected level of uncertainty.

For comparison, we have also tested the performance of the trial-by-trial 
decision prediction using likelihood functions decoded based on Poisson-like 
or independent Poisson population distribution assumptions, giving rise to the 
Poisson-like model and the independent Poisson model, respectively.

Model fitting and model comparison. We used tenfold cross-validation to fit and 
evaluate both decision models, separately for each contrast-session. We divided all 
trials from a given contrast-session randomly into ten equally sized subsets,  
B1, B2, …, Bi, …, B10, where Bi is the ith subset. We then held out a single 
subset Bi as the test set and trained the decision model on the remaining nine 
subsets combined together, serving as the training set. The predictions and the 
performance of the trained model on the held out test set Bi were then reported. 
We repeated this ten times, iterating through each subset as the test set, training on 
the remaining subsets.

The decision models were trained to minimize the negative log likelihood on 
the subject’s decision across all trials in the training set:

∏ Ĉ ĈΘ̂ = − = ∣ Θ
Θ

P Margmin( log ( , )) (39)
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i
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where Θ is the collection of the parameters for the decision model M and Ĉi is the 
subject’s decision on the ith trial in the training set. The term P(Ĉ|M, Θ) is given 
by equation (38) with L θ( ) from the full-likelihood decoder for the full-likelihood 
model or from the fixed-uncertainty decoder for the fixed-uncertainty model.

The optimizations were performed using three algorithms: fmincon and 
ga from MATLAB’s optimization toolbox and Bayesian Adaptive Direct Search65. 
When applicable, the optimization was repeated with 50 or more random 
parameter initializations. For each cross-validation fold, we retained the parameter 
combination Θ̂ that yielded the best training set score (that is, lowest negative log 
likelihood) among all optimization runs across different algorithms and parameter 
initializations. We subsequently tested the model M with the best training set 
parameter Θ̂ and reported the score on the test set. For each contrast-session, all 
analyses on the trained model presented in the main text were performed on the 
aggregated test sets scores.

Likelihood shuffling analysis. To assess the contribution of the trial-by-trial 
fluctuations in the decoded likelihood functions in predicting the animal’s 
decisions under the full-likelihood model, for each contrast-session we shuffled 
the likelihood functions among trials in the same stimulus orientation bin, 
while maintaining the trial-to-trial relationship between the point estimate of 
the stimulus orientation (that is, mean of the normalized likelihood) and the 
perceptual decision. Specifically, we binned trials to the nearest orientation degree 
such that each bin was centered at an integer degree (that is, bin center ∈ ℤ) 
with the bin width of 1°. We then shuffled the likelihood functions among trials 
in the same orientation bin. This effectively removed the stimulus orientation-
conditioned correlation between the likelihood function and the subject’s 
classification Ĉ, while preserving the expected likelihood function for each 
stimulus orientation.

However, we were specifically interested in decoupling the uncertainty 
information contained in the shape of the likelihood function from the decision 
while minimally disrupting the trial-by-trial correlation between the point estimate 
of the stimulus orientation and the subject’s classification decision. To achieve 
this, for each trial, we shifted the newly assigned likelihood function such that 
the mean of the normalized likelihood function, μL (equation (23)), remained the 
same for each trial before and after the likelihood shuffling (Fig. 5c). This allowed 
us to specifically assess the effect of distorting the shape of the likelihood function 
conditioned on both the (binned) stimulus orientation and the point estimate of 
the stimulus orientation (that is, μL) (Fig. 5c). To ensure that both models can take 
full advantage of any information that remains in the shuffled likelihood functions, 
we trained both the full-likelihood model and the fixed-uncertainty model 
from scratch on the shuffled data. Aside from the difference in the dataset, we 
followed the exact procedure used when training on the original (unshuffled) data, 
evaluating the performance through cross-validation on the test sets.

Classification simulation. We computed the expected effect size of the model 
fit difference between the full-likelihood model and the fixed-uncertainty model 
by generating simulated data using the trained full-likelihood model as the 
ground truth. Specifically, for each trial for each contrast-session, we computed 
the probability of responding Ĉ = 1 from equation (38), using the full decoded 
likelihood function L θ( ) for the given trial, and sampled a classification decision 
from that probability. This procedure yielded simulated data where all monkeys’ 
decisions were replaced by decisions made by the trained full-likelihood models. 
We repeated this procedure five times, thereby producing five sets of simulated 
data. For each set of simulated data, we trained the two decision models (full-
likelihood model and fixed-uncertainty model) on each contrast-session with 
tenfold cross-validation and reported the aggregated test set scores as was done for 
the original data.

Statistics. All statistical tests used, including statistic values, sample sizes and  
P values, are provided in the figure captions. Where t test was used, the underlying 
data distribution was assumed to be normal, but this was not formally tested. Exact 
P values less than 10−9 were reported as P < 10−9. When appropriate, P values were 
corrected for multiple comparisons using Bonferroni correction, and the corrected 
P value was reported.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All figures except for Fig. 1 and Extended Data Fig. 4 were generated from raw 
data or processed data. The data generated and/or analyzed during this study are 
available from the corresponding author upon reasonable request. No publicly 
available data were used in this study.

Code availability
Codes used for modeling and training the DNNs, as well as for figure generation, 
can be viewed and downloaded from https://github.com/eywalker/v1_likelihood. 
All other codes used for analysis, including data selection and decision model 
fitting, can be found at https://github.com/eywalker/v1_project. Finally, codes 
used for electrophysiology data processing can be found in the Tolias lab GitHub 
organization website (https://github.com/atlab).

References
	49.	Brainard, D. H. The psychophysics toolbox. Spat. Vis. 10,  

433–436 (1997).
	50.	Tolias, A. S. et al. Recording chronically from the same neurons in awake, 

behaving primates. J. Neurophysiol. 98, 3780–3790 (2007).
	51.	Subramaniyan, M., Ecker, A. S., Berens, P. & Tolias, A. S. Macaque monkeys 

perceive the flash lag illusion. PLoS ONE 8, e58788 (2013).
	52.	Quiroga, R. Q., Nadasdy, Z. & Ben-Shaul, Y. Unsupervised spike detection 

and sorting with wavelets and superparamagnetic clustering. Neural Comput. 
16, 1661–1687 (2004).

	53.	Kohn, A. & Movshon, J. A. Adaptation changes the direction tuning of 
macaque MT neurons. Nat. Neurosci. 7, 764–772 (2004).

	54.	Richard, M. D. & Lippmann, R. P. Neural network classifiers estimate 
bayesian a posteriori probabilities. Neural Comput. 3, 461–483 (1991).

	55.	Kline, D. M. & Berardi, V. L. Revisiting squared-error and cross-entropy 
functions for training neural network classifiers. Neural Comput. Appl. 14, 
310–318 (2005).

	56.	Kullback, S. & Leibler, R. A. On information and sufficiency. Ann. Math. Stat. 
22, 79–86 (1951).

	57.	MacKay, D. J. C. Information Theory, Inference, and Learning Algorithms Vol. 
22 (Cambridge University Press, 2003).

	58.	Srivastava, N., Hinton, G., Krizhevsky, A. & Salakhutdinov, R. Dropout: a 
simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 
15, 1929–1958 (2014).

	59.	Prechelt, L. in Neural Networks: Tricks of the Trade (eds Grégoire, M., Orr, G. 
B. & Müller, K.-R.) 53–68 (Springer-Verlag, 1998).

	60.	Jaderberg, M., Simonyan, K., Zisserman, A. & Kavukcuoglu, K.  
Spatial transformer networks. Adv. Neural Inf. Process. Syst. 28,  
2017–2025 (2015).

	61.	Rasmussen, C. E. & Williams, C. K. I. Gaussian Processes for Machine 
Learning (Adaptive Computation and Machine Learning) (The MIT  
Press, 2005).

	62.	Shrikumar, A., Greenside, P., Shcherbina, A. & Kundaje, A. Not just a black 
box: learning important features through propagating activation differences. 
Preprint at arXiv https://arxiv.org/abs/1605.01713 (2016).

	63.	Mamassian, P. & Landy, M. S. Observer biases in the 3D interpretation of line 
drawings. Vis. Res. 38, 2817–2832 (1998).

	64.	Acerbi, L., Vijayakumar, S. & Wolpert, D. M. On the origins of suboptimality 
in human probabilistic inference. PLoS Comput. Biol. 10, e1003661 (2014).

Nature Neuroscience | www.nature.com/natureneuroscience

https://github.com/eywalker/v1_likelihood
https://github.com/eywalker/v1_project
https://github.com/atlab
https://arxiv.org/abs/1605.01713
http://www.nature.com/natureneuroscience


ArticlesNATurE NEurOsciEncE

	65.	Acerbi, L. & Ma, W. J. Practical Bayesian optimization for model fitting with 
Bayesian adaptive direct search. Adv. Neural Inf. Process. Syst. 30, 1836–1846 
(2017).

Acknowledgements
The research was supported by a National Science Foundation Grant (no. IIS-1132009 to 
W.J.M. and A.S.T.), a DP1 EY023176 Pioneer Grant (to A.S.T.) and grants from the US 
Department of Health & Human Services, National Institutes of Health, National Eye 
Institute (nos. F30 EY025510 to E.Y.W., R01 EY026927 to A.S.T. and W.J.M., and T32 
EY00252037 and T32 EY07001 to A.S.T.) and National Institute of Mental Health  
(nos. F30 F30MH088228 to R.J.C.). We thank F. Sinz for helpful discussion and 
suggestions on the DNN fitting to likelihood functions. We also thank T. Shinn for 
assistance in the behavioral training of the monkeys and experimental data collection.

Author contributions
All authors designed the experiments and developed the theoretical framework. R.J.C. 
programmed the experiment. R.J.C. trained the first monkey, and R.J.C. and E.Y.W. 
recorded data from this monkey. E.Y.W. trained and recorded from the second monkey. 

E.Y.W. performed all data analyses. E.Y.W. wrote the manuscript, with contributions 
from all authors. W.J.M. and A.S.T. supervised all stages of the project.

Competing interests
E.Y.W. and A.S.T. hold equity ownership in Vathes LLC, which provides development 
and consulting for the open source software (DataJoint) used to develop and operate a 
data analysis pipeline for this publication.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s41593-019-0554-5.

Supplementary information is available for this paper at https://doi.org/10.1038/
s41593-019-0554-5.

Correspondence and requests for materials should be addressed to E.Y.W., W.J.M.  
or A.S.T.

Peer review information Nature Neuroscience thanks Jan Drugowitsch and Robbe Goris 
for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Nature Neuroscience | www.nature.com/natureneuroscience

https://doi.org/10.1038/s41593-019-0554-5
https://doi.org/10.1038/s41593-019-0554-5
https://doi.org/10.1038/s41593-019-0554-5
http://www.nature.com/reprints
http://www.nature.com/natureneuroscience


Articles NATurE NEurOsciEncE

Extended Data Fig. 1 | Number of trials per contrast-session. Each point corresponds to a single contrast-session, depicting the number of trials 
performed at the particular contrast.
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Extended Data Fig. 2 | Example decoded likelihood functions. Example decoded likelihood functions under Full-Likelihood, Poisson-like and Independent-
Poisson based decoders are shown for randomly selected trials from three distinct contrast-sessions from Monkey T.
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Extended Data Fig. 3 | Performance of the likelihood functions decoded by DNN-based decoders. a, b, Results on independent Poisson population 
responses. a, KL divergence between the ground truth likelihood function and likelihood function decoded with: a trained DNN DDNN vs. independent 
Poisson distribution assumption DPoiss. Each point is a single trial in the test set. The distributions of DDNN and DPoiss are shown at the top and right 
margins, respectively. The distribution of pair-wise difference between DDNN and DPoissis shown on the diagonal. b, Example likelihood functions. The 
ground truth (solid blue), independent-Poisson based (dotted orange), and DNN-based (dashed green) likelihood functions are shown for selected trials 
from the test set. Four random samples (columns) were drawn from the top, middle and bottom 1/3 of trials sorted by the DDNN (rows). c, d, Same as in  
a, b but for simulated population responses with correlated Gaussian distribution where the variance is scaled by the mean.

Nature Neuroscience | www.nature.com/natureneuroscience

http://www.nature.com/natureneuroscience


ArticlesNATurE NEurOsciEncE

Extended Data Fig. 4 | Alternative relationships between the likelihood function and the decision. Possible relationships between variables in the 
model are indicated by black arrows. We consider two scenarios: a, c the likelihood function L mediates the decision Ĉ, b, d the likelihood function does 
not mediate the decision. The gray arrow represents the trial-by-trial fluctuations in the subject’s decisions Ĉ as predicted by the variable. a, b, When 
not conditioning on the stimulus s, the stimulus can drive correlation among all variables, making it difficult to distinguish the two scenarios. c, d, When 
conditioning on the stimulus (red push pins), we expect correlation between Ĉ and L only when L mediates the decision, allowing us to distinguish the two 
scenarios. The variable r represents the recorded cortical population and rall represents responses of all recorded and unrecorded neurons.
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Extended Data Fig. 5 | Fixed-Uncertainty decoder. a, A schematic of a DNN for the Fixed-Uncertainty decoder mapping r to the decoded likelihood 
function LL. For each contrast-session, the Fixed-Uncertainty decoder learns a single fixed-shape likelihood function LL 0 and a network that shifts LL 0 based 
on the population response. Therefore, all resulting likelihood functions share the same shape (uncertainty) but differ in the center location from trial to 
trail. b, Example decoded likelihood functions from randomly selected trials from a single contrast-session for both the Fixed-Uncertainty decoder and the 
Full-Likelihood decoder.
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Extended Data Fig. 6 | Fitted Bayesian decision maker parameters. Each point corresponds to a single contrast-session, depicting the average fitted 
parameter value across 10 cross-validation training sets plotted against the contrast of the contrast-session. The solid line and error bars/shaded area 
depicts the mean and the standard error of the mean of the parameter value for binned contrast values, respectively.
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Extended Data Fig. 7 | Model performance on decision predictions. a, b, Model performance measured in proportions of trials correctly predicted by the 
model as a function of contrast for four decision models based on different likelihood decoders (n=110,695 and n=192,630 total trials across all contrasts 
for Monkey L and T, respectively). On each trial, the class decision that would maximize the posterior rr∣ĈP( ) was chosen to yield a concrete classification 
prediction. c, d, Same as in a, b but with performance measured as the trial-averaged log likelihood of the model. For a, b and c, d, black dashed lines 
indicate the performance at chance (50 % and ln(0.5) , respectively). e, f, The average trial-by-trial performance of the Full-Likelihood, Poisson-like and 
Independent Poisson Models are shown relative to the Fixed-Uncertainty Model across contrasts, measured as the average trial difference in the log 
likelihood (n=110,695 and n=192,630 total trials for Monkey L and T, respectively). Results are shown for the cross-validated datasets. All data points are 
the means and error bar/shaded area indicates the standard error of the mean.
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Extended Data Fig. 8 | Model performance based on population responses to different stimulus windows. a, c, Average trial-by-trial performance of the 
Full-Likelihood Model relative to the Fixed-Uncertainty Model across contrasts, measured as the average trial difference in the log likelihood. The models 
were trained and evaluated on the population response to (a) the first half (0—250 ms, ‘fh’) (n=110,816 and n=192,962 total trials for Monkey L and T) 
or (c) the second half (250—500 ms, ‘sh’) (n=110,887 and n=192,980 total trials for Monkey L and T) of the stimulus presentation. The results for the 
original (unshuffled) and the shuffled data are shown in solid and dashed lines, respectively. The squares and triangles mark Monkey L and T, respectively. 
b, d, Relative model performance summarized across all contrasts based on models trained as described in (a, c). Performance on the original and the 
shuffled data is shown individually for both monkeys. The trial log likelihood difference between the two models was statistically significant for both 
stimulus windows, and on both the original and the shuffled data for both monkeys (two tailed paired t-tests; Monkey L: =t (110815) 31.29fh,original ,  

=t (110886) 25.86sh,original , = −t (110886) 6.98sh,shuffled ; Monkey T: =t (192961) 18.48fh,original , = −t (192961) 19.31fh,shuffled , =t (192979) 19.01sh,original ,  
= −t (192979) 20.17sh,shuffled ; all with < −p 10 9), 0—250 ms for Monkey L ( =t (110815) 1.89fh,shuffled  with =P 0.17). The difference between the Full-

Likelihood Model on the original and the shuffled data was significant for both monkeys for both stimulus windows (two tailed paired t-tests; Monkey L: 
=t (110815) 32.73fh , =t (110886) 37.10sh ; Monkey T: =t (192961) 40.69fh , =t (192979) 42.78sh ; all with < −P 10 9). All p values are Bonferroni corrected for 

the three comparisons. All data points are means, and error bar/shaded area indicate standard error of the means.
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Extended Data Fig. 9 | Expected model performance on simulated data and observed effect of shuffling. a, b, Using the trained Full-Likelihood Model 
as the ground truth to simulate the behavior, the expected performances of the model on the simulated data was assessed. a, Average trial-by-trial 
performance of the Full-Likelihood Model relative to the Fixed-Uncertainty Model across contrasts on the simulated data, measured as the trial-averaged 
difference in the log likelihood. The results for the unshuffled and the shuffled simulated data are shown in solid and dashed lines, respectively.  
The squares and triangles mark Monkey L and T, respectively. b, Relative model performance summarized across all contrasts. Results are shown for 
each monkey and for unshuffled and shuffled simulated data. For a and b, all data points are the means and error bar/shaded area indicates the standard 
deviation across the 5 simulation repetitions. For b, data points for individual simulation repetitions are depicted by gray icons next to the error bars.  
c, The dependence of the width of the likelihood function σL on the stimulus orientation is depicted for an example contrast-session (Monkey T, 8 % 
contrast, n=1,126 trials) on the original and the shuffled data. The shuffling procedure preserves the relationship between the average likelihood width and 
the stimulus orientation as desired. All data points are means, and error bar indicates standard deviation across trials falling in the specific bin.
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Extended Data Fig. 10 | Contributions of multi-units to the total attribution. a, For each contrast-session, the multi-units were ordered from the largest to 
the smallest attribution to the likelihood mean μA , and the cumulative attribution over the total of 96 multi-units were plotted (thin gray lines, n=545 total 
contrast-sessions from Monkey L and T). The average cumulative attribution over all contrast-sessions are depicted by the thick black lines. The results 
are shown for each attribution method separately. b, Same as in a, but for attribution to the likelihood standard deviation σA .
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size The sample size of two monkeys has been established following the standard practice in the non-human primate research and to ensure 
independent replication of results observed from the first monkey in the second monkey.

Data exclusions Some recorded trials were excluded from the analysis if there was an excessive noise in the recorded signals. Details of the exclusion criteria 
can be found in the Methods, and the criteria was established prior to testing any models.

Replication Every findings described in this study on one monkey has been successfully replicated on the second monkey that was independently trained, 
recorded and analyzed.

Randomization There was no randomization performed as the study does not involve multiple study groups, and all analyses were performed in identical 
fashion on all subjects.

Blinding There was no blinding performed as the study does not involve multiple study groups, and all analyses were performed in identical fashion on 
all subjects.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals This study involved two healthy, male rhesus macaque (Macaca mulatta) monkeys aged 10 and 7 years.

Wild animals This study did not involve wild animals.

Field-collected samples This study did not involve samples collected from the field.

Ethics oversight All procedures were approved by the Institutional Animal Care and Use Committee (IACUC) of Baylor College of Medicine.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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